文章摘要:数据分析师课程
大数据火爆的时代,数据分析人才越来越受企业的青睐,很多同学也想去从事数据分析工作。那么数据分析师要学什么呢?现 […]
大数据火爆的时代,数据分析人才越来越受企业的青睐,很多同学也想去从事数据分析工作。那么数据分析师要学什么呢?现在就来看看吧。
数据分析师要学习的内容
一、统计学
我看一些人推荐了不少统计学的专业书籍,直接把人吓跑了。我自己就大学时候学过《概率论与数理统计》,其他统计相关的内容也没怎么看过。对于互联网的数据分析来说,并不需要掌握太复杂的统计理论。所以只要按照本科教材,学一下统计学就够了。
二、编程能力
学会一门编程语言,会让你处理数据的效率大大提升。如果你只会在 Excel 上复制粘贴,动手能力是不可能快的。我比较推荐Python,上手比较快,写起来比较优雅。
三、数据库
数据分析师经常和数据库打交道,不掌握数据库的使用可不行。学会如何建表和使用 SQL 语言进行数据处理,可以说是必不可少的技能。
四、数据仓库
许多人分不清楚数据库和数据仓库的差异,简单来说,数据仓库记录了所有历史数据,专门设计为方便数据分析人员高效使用的。
五、数据分析方法
对于互联网数据分析人员来说,可以看一下《精益创业》和《精益数据分析》,掌握常用的数据分析方法,然后再根据自己公司的产品调整,灵活组合。
六、数据分析工具
SAS、Matlab、SPSS 这些工具经常有人推荐,我要说的是在互联网公司一般都用不上。做可视化的Tableau,统计分析的友盟、百度统计,还有像我们神策分析等。
成为数据分析师需要掌握的技能
1.基础知识
数据分析师在数学知识的基础上,引入了统计学,其基础知识包含数学、线性代数、统计学等,这些也是决定数据分析职业发展高度的基石。对于初级数据分析师,学习描述统计相关的内容和公式即可,但要更进一步就需掌握统计算法,甚至机器学习算法等更多知识,对于算法相关的工作,则要对高数进行深入学习。
2.业务能力
数据分析师存在的意义就是通过数据分析来帮助企业实现业务增长,所以业务能力也是必须。企业的产品、用户、所处的市场环境以及企业的员工等都是必须要掌握的内容,通过这些内容建立帮助企业建立具体的业务指标、辅助企业进行运营决策等。
脱离业务的纯数据分析没有任何意义,没行业背景的技术如空中楼阁,想成为优秀的数据分析师或培养自己的数据分析思维,首先要对业务了如指掌,熟悉业务后再去获取需要的数据,对数据进行业务分析,制定出相应方案,这才是王道。
3.分析工具,如Excel、python、SQL、R语言等
既然是数据分析,平时更多的时间就是与数据分析打交道,数据采集、数据清洗、数据可视化等一系列数据分析工作都需要上面的工具来完成。
Excel运用最广,是最容易入门的数据分析工具之一,函数、数据透视表和公式必须熟练掌握。python都是比较好的数据入门语言,而R语言倾向于统计分析、绘图等,SQL是数据库。
另外,具备一个专业统计分析技能更好,SPSS作为入门是极好滴。不过随着数据的增长,编程语言的学习,如Python等将会使数据处理变得更高效。当然,只要和数据打交道,我们就会接触到数据库,所以要学SQL(数据库),掌握基本的增、删、改、查等技能。
最后,可以学写主流的利器,如Python或R,有些行业可能会用到SAS或其他工具,请依据自己的行业选择。
数据分析师需要具备哪些能力
1、分析工具/编程语言
Excel是运用最广,也是最容易入门的数据分析工具之一,函数、数据透视表和公式必须熟练掌握。另外,还要学会一个专业统计分析工具,SPSS作为入门学习是比较好的。不过随着数据的增长,编程语言的学习将会使数据处理变得更加高效。
对于编程的学习,首先要学习SQL,掌握基本的增、删、改、查,这是任何一个数据岗位必备的技能。其次,学习Python或R,当然有些行业可能会用到SAS或者其他工具,请依据自己的行业选择,当然现在主流是使用Pyhton。
2、业务/行业/商业知识
脱离业务的纯数据分析是没有任何意义的,没有行业背景的技术如空中楼阁,所以不要走入这个死胡同;要想成为一个优秀的数据分析师,首先要对业务了如指掌,在熟悉业务后;再去获取你需要的数据,通过你的数据分析能力,对数据进行分析,制定相应的方案。
3、协调沟通
数据分析工作会涉及到很多和业务部门、技术部门的沟通,做出报告后也需要进行展示,并说服别人接受自己的结果。因此,数据分析工作对个人的协调沟通能力也有一定的要求。
4、持续、快速学习
无论做数据分析的哪个方向,都需要有持续、快速学习的能力,学业务逻辑、学行业知识、学技术工具、学分析框架……数据分析领域中有学不完的内容,需要大家有一颗时刻不忘学习的心。